Consider the given function and the given interval. f(x) = (x − 4)2, [3, 6]
(a) Find the average value fave of f on the given interval. fave =
(b) Find c such that fave = f(c). c = (smaller value) c = (larger value)

Respuesta :

Answer:

f average = 1

smaller value c = 3

larger value c = 5

Step-by-step explanation:

Ver imagen beingteenowfmao

Functions can be represented using equations.

  • The average value of the function is 1
  • The smaller and larger values of c are: 3 and 5

The function is given as:

[tex]\mathbf{f(x) = (x - 4)^2\ [3,6]}[/tex]

(a) The average value

This is calculated as:

[tex]\mathbf{f_{ave} = \frac{f(b) - f(a)}{b - a}}[/tex]

So, we have:

[tex]\mathbf{f_{ave} = \frac{f(6) - f(3)}{6 - 3}}[/tex]

[tex]\mathbf{f_{ave} = \frac{f(6) - f(3)}{3}}[/tex]

Calculate f(6) and f(3)

[tex]\mathbf{f(6) = (6 - 4)^2 = 4}[/tex]

[tex]\mathbf{f(3) = (3 - 4)^2 = 1}[/tex]

So, we have:

[tex]\mathbf{f_{ave} = \frac{4 - 1}{3}}[/tex]

[tex]\mathbf{f_{ave} = \frac{3}{3}}[/tex]

[tex]\mathbf{f_{ave} = 1}[/tex]

Hence, the average value of the function is 1

[tex]\mathbf{(b)\ f_{ave} = f(c)}[/tex]

Substitute c for x in:

[tex]\mathbf{f(x) = (x - 4)^2}[/tex]

[tex]\mathbf{f(c) = (c - 4)^2}[/tex]

[tex]\mathbf{f_{ave} = f(c) = 1}[/tex]

So, we have:

[tex]\mathbf{ (c - 4)^2 = 1}[/tex]

Take square roots of both sides

[tex]\mathbf{c - 4 = \pm 1}[/tex]

Add 4 to both sides

[tex]\mathbf{c =4 \pm 1}[/tex]

Split

[tex]\mathbf{c =(4 - 1,4+1)}[/tex]

[tex]\mathbf{c =(3,5)}[/tex]

Hence, the smaller and larger values of c are: 3 and 5

Read more about functions at:

https://brainly.com/question/14034038

ACCESS MORE