Answer:
Distance d=8.63m
Explanation:
mass of object m=47.5 kg
Initial velocity vi=0 m/s
Magnitude of force on object F(t)=(17.0 N/s)t
To find
Distance
Solution
The rocket accelerates due to variable force so we apply Newtons second law but the acceleration will not be constant because the force is not constant
We use ax=Fx/m to find acceleration but it must be integrate to find velocity and then the distance that rocket travels
So
[tex]ax=Fx/m\\gives\\ax(t)=(17.0N/s)t/(47.5kg)\\ax(t)=(0.35789m/s^{3})t\\ As\\Vx(t)=V_{o}+\int\limits^{}_{} { \lim_{0 \to \ t} ax(t) } \, dt=(0.178945m/s^{3} )t^{2}\\ X-X_{o}=\int\limits^{}_{} { \lim_{0 \to \ t} v(t) } \, dt=(0.05964m/s^{3})t^{3}\\ as\\t=5.25s\\So\\X-X_{o}=(0.05964m/s^{3})(5.25s)^{3}\\X-X_{o}=8.63m[/tex]
Distance d=8.63m