Respuesta :
Answer:
a)
i) [tex]v'=\frac{17}{20}[/tex] ii) [tex]\frac{m_v}{m_f-m_v} =\frac{17}{83}[/tex]
b) [tex]m_r=752963.55\ kg[/tex]
Explanation:
Given:
fraction of water in wet sugar of m kg by mass, [tex]m'_w=\frac{1}{5} \times m[/tex]
% of water evapourated from the total water after passing through the evapourator, [tex]m'_v=85\%[/tex]
a)
amount of wet sugar fed to the evapourator, [tex]m_f=100\ kg[/tex]
Now the mass of water present in the fed amount of sugar:
[tex]m_w=\frac{1}{5} \times m_f[/tex]
[tex]m_w=\frac{100}{5}[/tex]
[tex]m_w=20\ kg[/tex]
Now the amount of water leaving from this total amount of water after passing through the evapourator:
[tex]m_v=m_v' \times m_w[/tex]
[tex]m_v=\frac{85}{100} \times 20[/tex]
[tex]m_v=17\ kg[/tex]
i)
So, the fraction of of water leaving the evapourator:
[tex]v'=\frac{m_v}{m_w}[/tex]
[tex]v'=\frac{17}{20}[/tex]
ii)
Now the ratio of kg water vaporized/kg wet sugar leaving the evaporator.:
[tex]\frac{m_v}{m_f-m_v} =\frac{17}{100-17}[/tex]
[tex]\frac{m_v}{m_f-m_v} =\frac{17}{83}[/tex]
b)
amount of sugar fed per day, [tex]m_f=907185\ kg[/tex]
Now the mass of water in the given amount of sugar per day:
[tex]m_w=\frac{m_f}{5}[/tex]
[tex]m_w=\frac{907185}{5}[/tex]
[tex]m_w=181437\ kg[/tex]
Mass of water vapourized after passing through the evaporator:
[tex]m_v=\frac{85}{100}\times m_w[/tex]
[tex]m_v=\frac{85}{100}\times 181437[/tex]
[tex]m_v=154221.45\ kg[/tex]
Now the mass of water still remaining in the sugar:
[tex]m_r=m_w-m_v[/tex]
[tex]m_r=907185-154221.45[/tex]
[tex]m_r=752963.55\ kg[/tex]
is the mass of extra water to be evapourated.