Answer:
337.22 K
Explanation:
Given that:
P₁ = 1 atm
T₁ = 350 K
P₂ = 0.639 atm
T₂ = ??? (unknown)
R(rate constant) = 8.34 J k⁻¹ mol⁻¹
Using Clausius-Clapeyron equation, we can determine the final boiling point of the process.
Clausius-Clapeyron equation can be written as:
[tex]In\frac{P_2}{P_1}=\frac{\delta H_{vap}}{R}[\frac{T_2-T_1}{T_2T_1}][/tex]
Substituting our values given; we have:
[tex]In\frac{0.639}{1}=(\frac{34.4*10^3J/mol}{8.314 J K^{-1}mol^{-1}})[\frac{T_2-350}{350T_2}][/tex]
[tex]In({0.639})=(\frac{34.4*10^3}{8.314K^{-1}})[\frac{T_2-350}{350T_2}][/tex]
[tex]- 0.4479 = 41317.599 [\frac{T_2-350}{350T_2} ]K[/tex]
[tex]-\frac{0.4479}{4137.599} = [\frac{T_2-350}{350T_2} ][/tex]
[tex]- 1.0825118*10^{-4} = [\frac{T_2-350}{350T_2} ][/tex]
[tex]- 1.0825118*10^{-4} *350T_2 =T_2-350[/tex]
[tex]- 0.037889T_2=T_2-350[/tex]
[tex]350 = 0.03789T_2+T_2[/tex]
[tex]350 =1.03789T_2[/tex]
[tex]T_2= \frac{350}{1.03789}[/tex]
[tex]T_2 = 337.22K[/tex]
∴ the boiling point of CH3COOC2H5 when the external pressure is 0.639 atm is 337.22 K.