Respuesta :
Answer:
a) [tex]P(X>100)=P(\frac{X-\mu}{\sigma}>\frac{100-\mu}{\sigma})=P(Z>\frac{100-73}{11})=P(Z>2.45)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>2.45)=1-P(z<2.45)=1-0.993=0.007[/tex]
b) [tex]P(60<X<83)=P(\frac{60-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{83-\mu}{\sigma})=P(\frac{60-73}{11}<Z<\frac{83-73}{11})=P(-1.182<z<0.909)[/tex]
And we can find this probability with this difference:
[tex]P(-1.182<z<0.909)=P(z<0.909)-P(z<-1.182)=0.818-0.119=0.699[/tex]
c) [tex]P(80<X<90)=P(\frac{80-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{90-\mu}{\sigma})=P(\frac{80-73}{11}<Z<\frac{90-73}{11})=P(0.636<z<1.55)[/tex]
And we can find this probability with this difference:
[tex]P(0.636<z<1.55)=P(z<1.55)-P(z<0.636)=0.939-0.738=0.201[/tex]
d) [tex]P(X<55)=P(\frac{X-\mu}{\sigma}<\frac{55-\mu}{\sigma})=P(Z<\frac{55-73}{11})=P(Z<-1.636)[/tex]
And we can find this probability using the normal standard table:
[tex]P(z<-1.636)=0.051[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the average monthly household cellular phone bill of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(73,11)[/tex]
Where [tex]\mu=73[/tex] and [tex]\sigma=11[/tex]
We are interested on this probability
[tex]P(X>100)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>100)=P(\frac{X-\mu}{\sigma}>\frac{100-\mu}{\sigma})=P(Z>\frac{100-73}{11})=P(Z>2.45)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>2.45)=1-P(z<2.45)=1-0.993=0.007[/tex]
Part b
[tex]P(60<X<83)=P(\frac{60-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{83-\mu}{\sigma})=P(\frac{60-73}{11}<Z<\frac{83-73}{11})=P(-1.182<z<0.909)[/tex]
And we can find this probability with this difference:
[tex]P(-1.182<z<0.909)=P(z<0.909)-P(z<-1.182)=0.818-0.119=0.699[/tex]
Part c
[tex]P(80<X<90)=P(\frac{80-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{90-\mu}{\sigma})=P(\frac{80-73}{11}<Z<\frac{90-73}{11})=P(0.636<z<1.55)[/tex]
And we can find this probability with this difference:
[tex]P(0.636<z<1.55)=P(z<1.55)-P(z<0.636)=0.939-0.738=0.201[/tex]
Part d
[tex]P(X<55)=P(\frac{X-\mu}{\sigma}<\frac{55-\mu}{\sigma})=P(Z<\frac{55-73}{11})=P(Z<-1.636)[/tex]
And we can find this probability using the normal standard table:
[tex]P(z<-1.636)=0.051[/tex]