Answer:
b) 0.64
c)
[tex]E(x) = 4.2\\\sigma^2 = 3.36[/tex]
Step-by-step explanation:
We are given the following in the question:
x : 1, 2, 3, 4, 5, 6
[tex]P(6) = 0.4[/tex]
The probability of rolling a 1, 2, 3,4 and 5 is same.
Now, we know that
[tex]\displaystyle\sum P(x_i) = 1\\\\\Rightarrow P(1)+P(2)+P(3)+P(3)+P(3)+P(6)=1\\\Rightarrow 5P(1) + 0.4 = 1\\\Rightarrow 5P(1)=0.6\\\Rightarrow P(1) = 0.12\\\Rightarrow P(1) =P(2) =P(3) =P(4) =P(5) = 0.12[/tex]
a) pmf of X
x: 1 2 3 4 5 6
P(x) 0.12 0.12 0.12 0.12 0.12 0.4
b) probability that an even number is rolled
[tex]P(\text{Even number}) \\=P(2) + P(4)+P(6)\\=0.12 + 0.12 + 0.4\\=0.64[/tex]
c) expectation and variance of X
[tex]E(x) = \displaystyle\sum x_iP(x_i)\\\\E(x) = 1(0.12) + 2(0.12)+3(0.12)+4(0.12)+5(0.12)+6(0.4)\\E(x) = 4.2\\E(x^2) = 1^2(0.12) + 2^2(0.12)+3^2(0.12)+4^2(0.12)+5^2(0.12)+6^2(0.4)\\E(x^2) = 21\\\sigma^2 = E(x^2) - (E(x))^2 = 21 - (4.2)^2 = 3.36[/tex]