Answer:
[tex]E=\dfrac{Q}{72\pi \varepsilon _0R^2}[/tex]
Explanation:
Given that
Charge on the sphere = Q
Radius = R
The charge on the particle = Q
x= 2 R
We have to find out electric filed at x= R/2
The electric field due to charge on the sphere :
[tex]4\pi r^2\ E_1=\dfrac{Qr^3}{R^3\varepsilon _0}\\E_1=\dfrac{Qr}{4\pi R^3\varepsilon _0}\\r=\dfrac{R}{2}\\E_1=\dfrac{QR}{8\pi R^3\varepsilon _0}\\E_1=\dfrac{Q}{8\pi R^2\varepsilon _0}[/tex]
E₁ is in positive x direction .
The electric field due to point charge :
[tex]E_2=\dfrac{Q}{4\pi \varepsilon _0\left ( 2R-\dfrac{R}{2} \right )^2}\\E_2=\dfrac{Q}{4\pi \varepsilon _0\left ( \dfrac{3R}{2} \right )^2}\\E_2=\dfrac{Q}{9\pi \varepsilon _0R^2}\\[/tex]
E₂ is in negative direction.
Total electric filed E
E=E₁ - E₂
[tex]E=\dfrac{Q}{8\pi \varepsilon _0R^2}-\dfrac{Q}{9\pi \varepsilon _0R^2}\\\\E=\dfrac{Q}{72\pi \varepsilon _0R^2}[/tex]
[tex]E=\dfrac{Q}{72\pi \varepsilon _0R^2}[/tex]