Answer:
Lower cord: [tex]T_1=34.4N[/tex]
Upper cord: [tex]T_2=68.8N[/tex]
Explanation:
Both buckets, of mass [tex]m=3.1kg[/tex], experiment an acceleration [tex]a=1.3m/s^2[/tex]. If the cord between them is under a tension [tex]T_1[/tex] and the upper cord is under a tension [tex]T_2[/tex], then the equation for the lower bucket is [tex]ma=T_1-mg[/tex], and for the upper bucket is [tex]ma=T_2-mg-T_1[/tex], where we have just written all the forces on each bucket, and taken the upwards direction as positive. We can rewrite this as:
[tex]T_1=ma+mg=m(a+g)[/tex]
[tex]T_2=ma+mg+T_1=m(a+g)+m(a+g)=2m(a+g)[/tex]
And with our values we have:
[tex]T_1=m(a+g)=(3.1kg)(1.3m/s^2+9.8m/s^2)=34.4N[/tex]
[tex]T_2=2m(a+g)=2(3.1kg)(1.3m/s^2+9.8m/s^2)=68.8N[/tex]