What is the common denominator of y + StartFraction y minus 3 Over 3 EndFraction in the complex fraction y + StartFraction y minus 3 Over 3 EndFraction divided by five-ninths + StartFraction 2 Over 3 y EndFraction? 3y(y – 3) y(y – 3) 3y 3

Respuesta :

Answer:

3

Step-by-step explanation:

[tex]y+\frac{y-3}{3} \\=\frac{3y+y-3}{3}\\=\frac{4y-3}{3}[/tex]

Following are the calculation of the common denominator:

Given:

[tex]\bold { \frac{y + [ \frac{(y - 3)}{3}]}{(\frac{5}{9} + \frac{2}{3y})}}[/tex]

To find:

common denominator=?

Solution:

[tex]\to \bold { \frac{y + [ \frac{(y - 3)}{3}]}{(\frac{5}{9} + \frac{2}{3y})}}[/tex]

Let Multiply and divide the above equation with '9y':

[tex]= { \frac{9y}{9y} \cdot \frac{y + [ \frac{(y - 3)}{3}]}{(\frac{5}{9} + \frac{2}{3y})}}\\\\= { \frac{y \cdot 9y + y\cdot 9y- \frac{3}{3}]} { 9y(\frac{5}{9}) + 9y(\frac{2}{3y})}}\\\\={ \frac{y \cdot 9y + 3y(y-3)} { 9y(\frac{5}{9}) + 9y(\frac{2}{3y})}}\\\\={ \frac{y \cdot 9y + 3y(y-3)} { y \cdot 5 + 9y(\frac{2}{3y})}}\\\\={ \frac{9y^2 + 3y^2-9y} { 5y + 6}}\\\\={ \frac{12y^2 -9y} { 5y + 6}}\\\\[/tex]

Therefore, the common denominator is "5y  + 6".

Learn more:

brainly.com/question/20993316

ACCESS MORE