Answer: The molecular mass of this compound is 131 g/mol
Explanation:
Depression in freezing point:
[tex]\Delta T_f=i\times k_f\times \frac{w_2\times 1000}{M_2\times w_1}[/tex]
where,
[tex]\Delta T_f[/tex] = depression in freezing point = [tex]3.9^oC[/tex]
[tex]k_f[/tex] = freezing point constant = [tex]20.8^0C/m[/tex]
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
[tex]w_2[/tex] = mass of solute = 0.49 g
[tex]w_1[/tex] = mass of solvent (cyclohexane) = 20.00 g
[tex]M_2[/tex] = molar mass of solute = ?
Now put all the given values in the above formula, we get:
[tex](3.9)^oC=1\times (20.8^oC/m)\times \frac{(0.49g)\times 1000}{M_2\times (20.00g)}[/tex]
[tex]M_2=131g/mol[/tex]
Therefore, the molar mass of solute is 131 g/mol