Answer:
The electric field at point P is [tex]2k\lambda d(\dfrac{L}{d^2\sqrt{L^2+d^2}})[/tex]
Explanation:
Given that,
Length = 2L units
Linear charge density = λ
We need to calculate the electric field at point P
Using formula of electric field
[tex]E=2\int_{0}^{L}{k\dfrac{\lambda}{r^2}dx\sin\theta}[/tex]
Put the value into the formula
[tex]E=2k\int_{0}^{L}{\dfrac{\lambda}{(k^2+d^2)}\times\dfrac{d}{\sqrt{x^2+d^2}}dx}[/tex]
[tex]E=2k\lambda d\int_{0}^{L}{\dfrac{dx}{(x^2+d^2)^{\frac{3}{2}}}}[/tex]
[tex]E=2k\lambda d(\dfrac{x}{d^2\sqrt{x^2+d^2}})_{0}^{L}[/tex]
[tex]E=2k\lambda d(\dfrac{L}{d^2\sqrt{L^2+d^2}})[/tex]
Hence, The electric field at point P is [tex]2k\lambda d(\dfrac{L}{d^2\sqrt{L^2+d^2}})[/tex]