hmmmmmmmmmmmmmmmmmmmmmmm
![hmmmmmmmmmmmmmmmmmmmmmmm class=](https://us-static.z-dn.net/files/de4/7e9e52abe7dd5440eef035f075da6b8f.png)
Answer:
[tex]\frac{7}{14}, \frac{20}{40}[/tex]
Step-by-step explanation:
Two fractions [tex]\frac{a}{b}, \frac{c}{d}[/tex] are said to be proportional to each when there exists a number [tex]k[/tex] such that
[tex]c=ka\\d=kb[/tex]
So k must be the same for both equations.
Let's analyze the 4 pairs of fractions:
1) [tex]\frac{7}{14}, \frac{20}{40}[/tex]
We have:
[tex]7=k\cdot 20 \rightarrow k=\frac{7}{20}\\14=k\cdot 40 \rightarrow k = \frac{14}{40}=\frac{7}{20}[/tex]
k is the same, so these two fractions are proportional.
2) [tex]\frac{18}{24},\frac{6}{12}[/tex]
We have:
[tex]18=k\cdot 6 \rightarrow k=\frac{18}{6}=3\\24=k\cdot 12 \rightarrow k = \frac{24}{12}=2[/tex]
k is NOT the same, so these two fractions are NOT proportional.
3)
[tex]\frac{6}{21}, \frac{2}{42}[/tex]
We have:
[tex]6=k\cdot 2 \rightarrow k=\frac{6}{2}=3\\21=k\cdot 42 \rightarrow k = \frac{21}{42}=0.5[/tex]
k is NOT the same, so these two fractions are NOT proportional.
4)
[tex]\frac{25}{100},\frac{50}{150}[/tex]
We have:
[tex]25=k\cdot 50 \rightarrow k=\frac{25}{50}=0.5\\100=k\cdot 150 \rightarrow k = \frac{100}{150}=\frac{2}{3}[/tex]
k is NOT the same, so these two fractions are NOT proportional.