Respuesta :

Answer:

[tex]\frac{7}{14}, \frac{20}{40}[/tex]

Step-by-step explanation:

Two fractions [tex]\frac{a}{b}, \frac{c}{d}[/tex] are said to be proportional to each when there exists a number [tex]k[/tex] such that

[tex]c=ka\\d=kb[/tex]

So k must be the same for both equations.

Let's analyze the 4 pairs of fractions:

1) [tex]\frac{7}{14}, \frac{20}{40}[/tex]

We have:

[tex]7=k\cdot 20 \rightarrow k=\frac{7}{20}\\14=k\cdot 40 \rightarrow k = \frac{14}{40}=\frac{7}{20}[/tex]

k is the same, so these two  fractions are proportional.

2) [tex]\frac{18}{24},\frac{6}{12}[/tex]

We have:

[tex]18=k\cdot 6 \rightarrow k=\frac{18}{6}=3\\24=k\cdot 12 \rightarrow k = \frac{24}{12}=2[/tex]

k is NOT the same, so these two fractions are NOT proportional.

3)

[tex]\frac{6}{21}, \frac{2}{42}[/tex]

We have:

[tex]6=k\cdot 2 \rightarrow k=\frac{6}{2}=3\\21=k\cdot 42 \rightarrow k = \frac{21}{42}=0.5[/tex]

k is NOT the same, so these two fractions are NOT proportional.

4)

[tex]\frac{25}{100},\frac{50}{150}[/tex]

We have:

[tex]25=k\cdot 50 \rightarrow k=\frac{25}{50}=0.5\\100=k\cdot 150 \rightarrow k = \frac{100}{150}=\frac{2}{3}[/tex]

k is NOT the same, so these two fractions are NOT proportional.

it's A, the one your cursor is over

ACCESS MORE