Respuesta :
Answer: The equilibrium concentration of CO at 1000 K is 0.016 M , the equilibrium concentration of [tex]Cl_2[/tex] at 1000 K is= 0.033 M and the equilibrium concentration of [tex]COCl_2[/tex] at 1000 K is 0.139 M
Explanation:
Initial concentration of [tex]CO=0.1550M[/tex]
Initial concentration of [tex]Cl_2=0.172M[/tex]
The given balanced equilibrium reaction is,
[tex]CO(g)+Cl_2\rightleftharpoons COCl_2(g)[/tex]
Initial conc. 0.1550 M 0.172 M 0 M
At eqm. conc. (0.1550-x) M (0.172-x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[COCl_2]}{[CO][Cl_2]}[/tex]
[tex]K_c=\frac{x}{(0.1550-x)(0.172-x)}[/tex]
we are given : [tex]K_c=255[/tex]
[tex]255=\frac{x}{(0.1550-x)(0.172-x)}[/tex]
Now put all the given values in this expression, we get :
[tex]x=0.139[/tex]
Thus the equilibrium concentration of CO at 1000 K is= (0.1550-x) M =(0.1550-0.139) M = 0.016 M
Thus the equilibrium concentration of [tex]Cl_2[/tex] at 1000 K is= (0.172-x) M =(0.172-0.139) M = 0.033 M
Thus the equilibrium concentration of [tex]COCl_2[/tex] at 1000 K is= x M = 0.139 M
The equilibrium concentration will be:
(a) 0.016 M
(b) 0.033 M
(c) 0.139 M
Given reaction is:
- [tex]CO+Cl_2 \Leftrightarrow COCl_2[/tex]
0.1550 0.172 O [tex]\rightarrow[/tex] initial
0.1550-x 0.172-x x [tex]\rightarrow[/tex] Equilibrium
Now,
→ [tex]K_c = \frac{[COCl_2]}{[CO][Cl_2]}[/tex]
By substituting the values, we get
[tex]255= \frac{x}{(0.1550-x)(0.172-x)}[/tex]
[tex]= \frac{x}{0.0267-0.155x-0.172x+x^ 2}[/tex]
[tex]255x^2- 83.385x+6.808 = x[/tex]
[tex]255x^2-84.385 x+6.808=0[/tex]
[tex]x = 0.192[/tex]
or,
[tex]x = 0.139[/tex] (correct value)
(a)
Equilibrium constant of [CO],
= [tex]0.1550-x[/tex]
= [tex]0.016 \ M[/tex]
(b)
Equilibrium constant of [Cl₂],
= [tex]0.172-x[/tex]
= [tex]0.033 \ M[/tex]
(c)
Equilibrium constant of [COCl₂],
= [tex]x[/tex]
= [tex]0.139 \ M[/tex]
Thus the above responses are correct.
Learn more about equilibrium here:
https://brainly.com/question/15151595