Answer:
The electric field strength inside the capacitor is 49880.77 N/C.
Explanation:
Given:
Side length of the capacitor plate (a) = 4.19 cm = 0.0419 m
Separation between the plates (d) = 0.407 mm = [tex]0.407\times 10^{-3}\ m[/tex]
Energy stored in the capacitor (U) = [tex]7.87\ nJ=7.87\times 10^{-9}\ J[/tex]
Assuming the medium to be air.
So, permittivity of space (ε) = [tex]8.854\times 10^{-12}\ F/m[/tex]
Area of the square plates is given as:
[tex]A=a^2=(0.0419\ m)^2=1.75561\times 10^{-3}\ m^2[/tex]
Capacitance of the capacitor is given as:
[tex]C=\dfrac{\epsilon A}{d}\\\\C=\frac{8.854\times 10^{-12}\ F/m\times 1.75561\times 10^{-3}\ m^2 }{0.407\times 10^{-3}\ m}\\\\C=3.819\times 10^{-11}\ F[/tex]
Now, we know that, the energy stored in a parallel plate capacitor is given as:
[tex]U=\frac{CE^2d^2}{2}[/tex]
Rewriting in terms of 'E', we get:
[tex]E=\sqrt{\frac{2U}{Cd^2}}[/tex]
Now, plug in the given values and solve for 'E'. This gives,
[tex]E=\sqrt{\frac{2\times 7.87\times 10^{-9}\ J}{3.819\times 10^{-11}\ F\times (0.407\times 10^{-3})^2\ m^2}}\\\\E=49880.77\ N/C[/tex]
Therefore, the electric field strength inside the capacitor is 49880.77 N/C