contestada

Each plate of a parallel‑plate capacitor is a square of side 4.19 cm, 4.19 cm, and the plates are separated by 0.407 mm. 0.407 mm. The capacitor is charged and stores 7.87 nJ 7.87 nJ of energy. Find the electric field strength inside the capacitor.

Respuesta :

Answer:

The electric field strength inside the capacitor is 49880.77 N/C.

Explanation:

Given:

Side length of the capacitor plate (a) = 4.19 cm = 0.0419 m

Separation between the plates (d) = 0.407 mm = [tex]0.407\times 10^{-3}\ m[/tex]

Energy stored in the capacitor (U) = [tex]7.87\ nJ=7.87\times 10^{-9}\ J[/tex]

Assuming the medium to be air.

So, permittivity of space (ε) = [tex]8.854\times 10^{-12}\ F/m[/tex]

Area of the square plates is given as:

[tex]A=a^2=(0.0419\ m)^2=1.75561\times 10^{-3}\ m^2[/tex]

Capacitance of the capacitor is given as:

[tex]C=\dfrac{\epsilon A}{d}\\\\C=\frac{8.854\times 10^{-12}\ F/m\times 1.75561\times 10^{-3}\ m^2 }{0.407\times 10^{-3}\ m}\\\\C=3.819\times 10^{-11}\ F[/tex]

Now, we know that, the energy stored in a parallel plate capacitor is given as:

[tex]U=\frac{CE^2d^2}{2}[/tex]

Rewriting in terms of 'E', we get:

[tex]E=\sqrt{\frac{2U}{Cd^2}}[/tex]

Now, plug in the given values and solve for 'E'. This gives,

[tex]E=\sqrt{\frac{2\times 7.87\times 10^{-9}\ J}{3.819\times 10^{-11}\ F\times (0.407\times 10^{-3})^2\ m^2}}\\\\E=49880.77\ N/C[/tex]

Therefore, the electric field strength inside the capacitor is 49880.77 N/C

ACCESS MORE