5. The gas-phase decomposition of ethyl iodide to give ethylene and hydrogen iodide is a first-order reaction. C2H5I  C2H4 + HI At 600 K, the value of k is 1.60 × 10– 5 s– 1. When the temperature is raised to 700 K, the value of k increases to 6.36 × 10– 3 s– 1. What is the activation energy for this reaction?

Respuesta :

Answer: The activation energy for the reaction is 209 kJ

Explanation:

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-E_a}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{E_a}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at [tex]600K[/tex] = [tex]1.60\time 10^{-5}s^{-1}[/tex]

[tex]K_2[/tex] = rate constant at [tex]700K[/tex] = [tex]6.36\times 10^{-3}s^{-1}[/tex]

[tex]E_a[/tex] = activation energy for the reaction = ?

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = [tex]600K[/tex]

[tex]T_2[/tex] = final temperature = [tex]700K[/tex]

Now put all the given values in this formula, we get :

[tex]\log (\frac{6.36\times 10^{-3}s^{-1}}{1.60\times 10^{-5}s^{-1}})=\frac{E_a}{2.303\times 8.314J/mole.K}[\frac{1}{600K}-\frac{1}{700K}][/tex]

[tex]2.60=\frac{E_a}{2.303\times 8.314J/mole.K}[\frac{1}{600K}-\frac{1}{700K}][/tex]

[tex]E_a=209087J/mole=209 kJ[/tex]

Therefore, the activation energy for the reaction is 209 kJ

ACCESS MORE