Answer: The activation energy for the reaction is 209 kJ
Explanation:
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-E_a}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{E_a}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at [tex]600K[/tex] = [tex]1.60\time 10^{-5}s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at [tex]700K[/tex] = [tex]6.36\times 10^{-3}s^{-1}[/tex]
[tex]E_a[/tex] = activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = [tex]600K[/tex]
[tex]T_2[/tex] = final temperature = [tex]700K[/tex]
Now put all the given values in this formula, we get :
[tex]\log (\frac{6.36\times 10^{-3}s^{-1}}{1.60\times 10^{-5}s^{-1}})=\frac{E_a}{2.303\times 8.314J/mole.K}[\frac{1}{600K}-\frac{1}{700K}][/tex]
[tex]2.60=\frac{E_a}{2.303\times 8.314J/mole.K}[\frac{1}{600K}-\frac{1}{700K}][/tex]
[tex]E_a=209087J/mole=209 kJ[/tex]
Therefore, the activation energy for the reaction is 209 kJ