Respuesta :
Answer:
a. 8
b. 7
Step-by-step explanation:
Let [tex]x[/tex] be the length of wire for the square and [tex]y = 8 -x[/tex] (eq. 1) be the length of the wire for the equilateral triangle.
We know the [tex]x[/tex] is the total length of the wire used, hence the length of a side of the square will be [tex]\frac{x}{4}[/tex] . The area of the square will be: [tex](\frac{x}{4}) ^ 2[/tex]
Similarly for the equilateral triangle, perimeter is [tex]y[/tex]. Hence the area will be [tex]\frac {\sqrt {3}\ y^2}{4}[/tex].
The total area of both shapes will be: [tex]A = (\frac{x}{4})^2 + \frac{\sqrt {3} \ y^2}{4}[/tex]
We will substitute the value of y from eq. 1:
[tex]A = (\frac{x}{4})^2 + \frac{\sqrt {3} \ (8-x)^2}{4}[/tex]
We find the derivative of the above function to find maximum and minimum: [tex]f'(x) = 0[/tex] ⇒ [tex]A'(x) = 0[/tex]
[tex]A' = \frac{x}{8} - \frac{\sqrt {3} \ (8-x)}{2}[/tex]
[tex]A' = \frac{x}{8} - \frac{\sqrt {3} \ (8-x)}{2} = 0\\\\\frac{x}{8} - \frac{8\sqrt{3} -\sqrt{3} x}{2} =0\\\\x - 4(8\sqrt{3} -\sqrt{3}x)=0\\\\x-32\sqrt3 - 4\sqrt3 x = 0\\\\x - 4\sqrt3 = 32 \sqrt3 \\\\(1 - 4\sqrt3)x = 32 \sqrt3 \\\\x = \frac{32 \sqrt3 }{(1 - 4\sqrt3)}\\\\x =6.99 \approx 7.00[/tex]
We find [tex]A''(7)[/tex] to check whether [tex]x = 7[/tex] is the minimum or maximum of the function.
[tex]A'' = \frac {1}{8} +\frac {\sqrt {3}}{2} \\\\A'' = 0.99 \approx 1.00[/tex]
Hence, [tex]x = 7[/tex] is the minimum and [tex]x = 8[/tex] will be the maximum