Respuesta :
Answer:
a.
[tex]C=1\\r=3\\y=t^3[/tex]
b.
[tex](-\infty,0)\cup(0,\infty)\\\\\\-\infty<t<0\hspace{3}\cup\hspace{3}0<t<\infty[/tex]
c.
[tex](-\infty,\infty)\\\\-\infty<t<\infty[/tex]
Step-by-step explanation:
a. Solving as a separable equation.
Divide both sides by y:
[tex]\frac{1}{y} 2t\frac{dy}{dt}=6y\frac{1}{y} \\\\\frac{2t}{y}\frac{dy}{dt} =6[/tex]
Divide both sides by 2t and multiply both sides by dt:
[tex]\frac{dy}{y} =\frac{3}{t}dt[/tex]
Integrate both sides:
[tex]\int\ \frac{dy}{y} =\int\ \frac{3}{t} dt[/tex]
Evaluate the integrals:
[tex]log(y)=log(t)+C[/tex]
Where C is an arbitrary constant.
Solving for y:
[tex]y(t)=e^{C} t^3=Ct^3\\Because\hspace{3}e^{C}\hspace{3}is\hspace{3}in\hspace{3}fact\hspace{3}another\hspace{3}constant[/tex]
Evaluating the initial condition:
[tex]y(-2)=-8=C(-2)^3\\\\-8=C(-8)\\\\C=1[/tex]
So:
[tex]y(t)=t^3[/tex]
b.
Let:
[tex]F(t,y)=\frac{6y}{2t} \\\\and\\\\\frac{\partial F}{\partial y} =\frac{6}{2t} }[/tex]
The domain of F(t,y) is:
[tex]t\in R \hspace{12}t\neq0[/tex]
The domain of [tex]\frac{\partial F}{\partial y}[/tex] is:
[tex]t\in R \hspace{12}t\neq0[/tex]
So, Existence and Uniqueness theorem tells us that for each [tex]t\in R:\hspace{12}t\neq0[/tex] there exists a unique solution defined in an open interval around [tex]t[/tex]
[tex](-\infty,0)\cup(0,\infty)\\\\\\-\infty<t<0\hspace{3}\cup\hspace{3}0<t<\infty[/tex]
c. The domain of y(t) is:
[tex]y\in R[/tex]
Hence, the actual interval of existence for the solution y(t) is:
[tex](-\infty,\infty)\\\\-\infty<t<\infty[/tex]