Respuesta :
Answer:
1) o=1.18 kg/m^3; r=286.987 J/(kg K); 2) T=871.12 K, U=375 kJ; 3) cp=438.793 J/(kg K), cv=430.480 J/(kg K), v=1.0.193, k=52.8135
Explanation:
1)
This questions is fully based on the Ideal Gas Law:
[tex]pV=nRT[/tex]
As we need to find initial density, we should change temperature to Kelvins:
[tex]T=22+273=295 K[/tex]
In addition, we should re-calculate amount of substance n, using mass m and MWair:
[tex]n=m/MWair[/tex]
As it is known, density can be calculated, as:
[tex]o=m/V[/tex]
Now, we can use all equations in the ideal gas law:
[tex]pV=\frac{m}{MWair} RT\\pMWair=\frac{m}{V} RT\\o=\frac{m}{V} =\frac{pMWair}{RT}=100*10^3*28.97*10^-3/(8.314*295)=1.18 kg/m^{3}[/tex]
To calculate specific gas constant for the given scenario (r), we should do the following:
[tex]r=R/MWair=8.314/(28.97*10^{-3})=286.987 J/(kg*K)[/tex]
Note, that we converted MWair to kg/mol using (10^(-3)).
2)
To solve this question, we should use again ideal gas law, from where we can directly find temperature of the gas:
[tex]pV=nRT\\pV=\frac{m}{MWair}RT\\ T=\frac{pVMWair}{mR}=\frac{10*10^{5}*28.97*10^{-3}*0.25}{8.314*1}=871.12 K[/tex]
Note, that all values were converted to SI units for the calculations (1 bar= 10^5 Pa).
To find internal energy, we can use the following equation:
[tex]U=\frac{3}{2} nRT=\frac{3}{2} \frac{m}{MWair} RT=\frac{3}{2}\frac{1}{28.97*-10^{-3}}*8.314*871.12=375000 J=375 kJ[/tex]
3)
To find specific heat, we can use the following ideal gas laws:
[tex]Cv=U/T=\frac{3/2 nRT}{T}=3/2nR=\frac{3}{2}\frac{m}{M} R\\ cv=Cv/m=\frac{3}{2}\frac{R}{M} =430.480 J/(kg K)[/tex]
Then, the cp, can be calculated using cv and R:
[tex]cp=cv+R=438.793 J/(kg K)[/tex]
The thermal coefficient v represents the ratio between cp and cv:
v=cp/cv=1.0193
Finally, we can find k:
[tex]k=\frac{v}{v-1}= 52.813[/tex]