Respuesta :

Answer:

[tex]x \leqslant -1\: or \: x \geqslant - 1[/tex]

Step-by-step explanation:

The given function is

[tex]f(x) = 13 - |2x + 1| [/tex]

We want to find all values of x for which:

f(x) is greater than or equal to 14.

This implies;

[tex] 13 - |2x + 1| \geqslant 14[/tex]

Subtract 13 from both sides;

[tex] - |2x + 1| \geqslant 14 - 13[/tex]

[tex]|2x + 1| \geqslant - 1[/tex]

By definition of the absolute value function,

[tex]- (2x + 1) \geqslant - 1 \: or \: (2x + 1) \geqslant - 1[/tex]

Divide through the first inequality and and reverse the inequality sign:

[tex]2x + 1 \leqslant -1 \: or \: 2x + 1 \geqslant - 1[/tex]

[tex]2x \leqslant -1 - 1 \: or \: 2x \geqslant - 1 - 1[/tex]

[tex]2x \leqslant -2 \: or \: 2x \geqslant - 2[/tex]

[tex]x \leqslant -1\: or \: x \geqslant - 1[/tex]

ACCESS MORE