A medium-sized jet has a 3.8-m-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to the cylindrical fuselage, and aerodynamic shaping gives it a drag coefficient of 0.37. How much thrust must the jets engines provide to cruise at 260 m/s at an altitude where the air density is 1.7 kg/m^3? Express your answer with the appropriate units.

Respuesta :

Answer:

[tex]2.4\times 10^{5} N[/tex]

Explanation:

The force of drag is given by

[tex]F= 0.5 C\rho Av^{2}[/tex]

C is coefficient of drag

[tex]\rho[/tex]is density of air

A is area which is given by [tex]\frac {\pi d^{2}}{4}[/tex]

V is the velocity

[tex]F= 0.5*0.37*1.7\times \frac {\pi 3.8^{2}}{4}\times 260^{2}=2.4\times 10^{5} N[/tex]

Answer:

The thrust  is [tex]F_{thrust}=240.87\rm kN[/tex]

Explanation:

Given information:

D=[tex]3.80\rm m[/tex]

[tex]C=0.37[/tex]

[tex]\rho= \rm 1.7kg/m^3[/tex]

[tex]v=\rm 260m/s[/tex]

[tex]m=85000kg[/tex]

[tex]F_{thrust}=?[/tex]

For equilibrium the net force will be zero ,so the thrust must be equal in magnitude to the drag.

[tex]F_{thrust}=F_{drag}=\frac{1}{2}\rho CAv^2[/tex]

[tex]A=\frac{\pi\times D^2}{4}=\frac{\pi\times 3.8^2}{4}=11.33\rm m^2[/tex]

On substitution,

[tex]F_{thrust}=F_{drag}=\frac{1}{2}\rho CAv^2=\frac{1}{2}\times 1.7\times0.37\times11.33\times (260)^2=240.87\rm kN[/tex]

[tex]F_{thrust}=240.87\rm kN[/tex]

Hence,the thrust  is [tex]F_{thrust}=240.87\rm kN[/tex].

https://brainly.com/question/12774964?referrer=searchResults

ACCESS MORE