Respuesta :
Explanation:
Using equation of motion to determine the acceleration of the car,
vf^2 = vi^2 + 2 * a * S,
vf = 0
0 = vi^2 + 2 * a * S
Converting mph to m/s,
3 mph * 5280 ft/mi * 12 in/ft * 2.54 cm/in * 1 m/100 cm * 1 h/3600 s
= 3 * 0.445
v = 1.335 m/s
Converting in to m,
2 in * 2.54 cm/in * 1 m/100 cm = 0.0254 m
= 2 * 0.0254
S = 0.0508 m
0 = 1.335^2 + 2 * a * 0.0508
a = -1.335^2 ÷ 0.1013
= -17.54 m/s^2
Mass of car (assumed) = 2000 kg
Force = ma
= 2000 × 17.54
= 35.08 kN.
The value of force will be 35.08kN.
From the equation of acceleration,
[tex]v_f^2 = v_i^2 + 2 * a * s[/tex]....................(1)
where
Final velocity, [tex]v_f[/tex]= 0
Initial velocity= [tex]v_i[/tex]
Therefore,
[tex]0 = v_i^2 + 2 * a * s[/tex]
- Unit conversions for mph to m/s,
[tex]3 mph * 5280 ft/mi * 12 in/ft * 2.54 cm/in * 1 m/100 cm * 1 h/3600 s = 3 * 0.445[/tex]
So the value of velocity will be, v = 1.335 m/s
- Unit conversion for inches to meters,
[tex]2 in * 2.54 cm/in * 1 m/100 cm = 0.0254 m = 2 * 0.0254[/tex]
So the value of displacement will be, s = 0.0508 m
Now substituting the values in equation (1)
[tex]0 = 1.335^2 + 2 * a * 0.0508\\\\a =\frac{ -1.335^2}{0.1013} \\\\a= -17.54 m/s^2[/tex]
Given:
Mass of car (assumed) = 2000 kg
So, adding values of mass and acceleration in the formula of Force.
[tex]\text{Force} = m*a\\\\\text{Force}= 2000 * 17.54\\\\\text{Force}= 35.08 kN[/tex]
Thus, the value of force will be 35.08kN.
Learn more:
brainly.com/question/25749514
