Respuesta :
Explanation:
The given data is as follows.
Temperature of metal = [tex]296^{o}C[/tex] = (296 + 273) K
= 569 K
Density of the metal = 8.85 [tex]g/cm^{3}[/tex] = [tex]8.85 \times 10^{-6} g/m^{3}[/tex] (as [tex]1 cm^{3} = 10^{-6} m^{3}[/tex])
Atomic mass = 51.40 g/mol
Vacancies = [tex]9.19 \times 10^{23} m^{-3}[/tex]
Formula to calculate the number of atomic sites is as follows.
n = [tex]\frac{\rho \times N_{A}}{\text{atomic weight}}[/tex]
= [tex]\frac{8.85 \times 10^{-6} \times 6.022 \times 10^{23}}{51.40 g/mol}[/tex]
= [tex]1.036 \times 10^{17} atom/m^{3}[/tex]
Now, we will calculate the energy as follows.
E = [tex]-KT \times ln (\frac{\text{no. of vacancies}}{\text{no. of atomic sites}})[/tex]
where, K = [tex]8.62 \times 10^{-5}[/tex]
E = [tex]-8.62 \times 10^{-5} \times 569 K \times ln (\frac{9.19 \times 10^{23}}{1.036 \times 10^{17} atom/m^{3}})[/tex]
= [tex]78.46 eV/atom[/tex]
Therefore, we can conclude that energy (in eV/atom) for vacancy formation in given metal, M, is [tex]78.46 eV/atom[/tex].