Calculate the energy (in eV/atom) for vacancy formation in some metal, M, given that the equilibrium number of vacancies at 296oC is 9.19 × 1023 m-3. The density and atomic weight (at 296°C) for this metal are 8.85 g/cm3 and 51.40 g/mol, respectively.

Respuesta :

Explanation:

The given data is as follows.

       Temperature of metal = [tex]296^{o}C[/tex] = (296 + 273) K

                                            = 569 K

     Density of the metal = 8.85 [tex]g/cm^{3}[/tex] = [tex]8.85 \times 10^{-6} g/m^{3}[/tex]      (as [tex]1 cm^{3} = 10^{-6} m^{3}[/tex])

     Atomic mass = 51.40 g/mol

    Vacancies = [tex]9.19 \times 10^{23} m^{-3}[/tex]

Formula to calculate the number of atomic sites is as follows.

           n = [tex]\frac{\rho \times N_{A}}{\text{atomic weight}}[/tex]

              = [tex]\frac{8.85 \times 10^{-6} \times 6.022 \times 10^{23}}{51.40 g/mol}[/tex]

              = [tex]1.036 \times 10^{17} atom/m^{3}[/tex]

Now, we will calculate the energy as follows.

                E = [tex]-KT \times ln (\frac{\text{no. of vacancies}}{\text{no. of atomic sites}})[/tex]

where,    K = [tex]8.62 \times 10^{-5}[/tex]

         E = [tex]-8.62 \times 10^{-5} \times 569 K \times ln (\frac{9.19 \times 10^{23}}{1.036 \times 10^{17} atom/m^{3}})[/tex]

               = [tex]78.46 eV/atom[/tex]

Therefore, we can conclude that energy (in eV/atom) for vacancy formation in given metal, M, is [tex]78.46 eV/atom[/tex].

ACCESS MORE