Respuesta :
Answer:
Explanation:
The detailed steps and appropriate integration and differentiation is as shown in the attached files.
au = −g − kv2
ad = −g + kv2


The maximum height and speed respectively if the ball is thrown upward at 30 m/s are;
Maximum height = 36.55 m
Speed at maximum height; v_f = 24.09 m/s
We are given;
upward acceleration; a_u = -g - kv²
downward acceleration; a_d = -g + kv²
k = 0.006 /m
Initial speed; u = 30 m/s
Now, acceleration is;
a = v(dv/dy)
Thus;
dy = (v/a)dv
Integrating to get;
[tex]\int\limits^h_0 {dy} \, = \int\limits^0_u \frac{u}{-g - kv^{2} } } \, du[/tex]
Integrating with the given limits, we now have;
h = [tex]\frac{-1}{2k}[/tex](In (g + k(0)) - (In(g + k(30²)))
h = -¹/₍₂ ₓ ₀.₀₀₆₎(In 9.81 - (In(9.81 + (0.006 * 900)
h = -83.33(2.2834 - 2.722)
h = 36.55 m
B ) For the downward motion, we have;
Integrating to get;
[tex]\int\limits^0_h {dy} \, = \int\limits^v_0 \frac{v}{-g + kv^{2} } } \, dv[/tex]
Integrating with the given limits, we now have;
-h = [tex]\frac{1}{2k}[/tex](In(-g + k(v²)))
Thus;
-36.55 = ¹/₍₂ ₓ ₀.₀₀₆₎(In(-9.81 + 0.006v²)) - In(-9.81)
(In(-9.81 + 0.006v²)/-9.81) = -0.4386
(-9.81 + 0.006v²)/-9.81 = e⁻⁰'⁴³⁸⁶
0.645 * -9.81 = -9.81 + 0.006v²
-6.3268 = -9.81 + 0.006v²
0.006v² = -9.81 + 6.3268
0.006v² = 3.4832
v = √(3.4832/0.006)
v = 24.09 m/s
Read more about aerodynamic drag at; https://brainly.com/question/6672263