Respuesta :
Answer : The value of equilibrium constant (K) is, [tex]5.71\times 10^4[/tex]
Explanation :
First we have to calculate the concentration of [tex]N_2,O_2\text{ and }N_2O[/tex]
[tex]\text{Concentration of }N_2=\frac{\text{Moles of }N_2}{\text{Volume of solution}}=\frac{2.80\times 10^{-4}mol}{2.00L}=1.4\times 10^{-4}M[/tex]
and,
[tex]\text{Concentration of }O_2=\frac{\text{Moles of }O_2}{\text{Volume of solution}}=\frac{2.50\times 10^{-5}mol}{2.00L}=1.25\times 10^{-5}M[/tex]
and,
[tex]\text{Concentration of }N_2O=\frac{\text{Moles of }N_2O}{\text{Volume of solution}}=\frac{2.00\times 10^{-2}mol}{2.00L}=1.00\times 10^{-2}M[/tex]
Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:
[tex]N_2(g)+O_2(g)\rightarrow 2N_2O(g)[/tex]
The expression for equilibrium constant is:
[tex]K=\frac{[N_2O]^2}{[N_2][O_2]}[/tex]
Now put all the given values in this expression, we get:
[tex]K=\frac{(1.00\times 10^{-2})^2}{(1.4\times 10^{-4})\times (1.25\times 10^{-5})}[/tex]
[tex]K=5.71\times 10^4[/tex]
Thus, the value of equilibrium constant (K) is, [tex]5.71\times 10^4[/tex]
Therefore, the equilibrium constant for the reaction is [tex]4.08\times 10^{8}[/tex].
Equilibrium Constant:
A chemical reaction is in equilibrium when the concentrations of reactants and products are constant - their ratio does not vary.
Following is the equilibrium reaction occurring between [tex]N_{2}[/tex] and [tex]O_{2}[/tex].[tex]2N_{2}\left ( g \right )+O_{2}\left ( g \right )\rightleftharpoons 2N_{2}O\left ( g \right )[/tex]
Expression for the equilibrium constant is as follows
[tex]K=\frac{\left [ N_{2}O \right ]^{2}}{\left [ N_{2} \right ]^{2}\left [ O_{2} \right ]} ......(1)[/tex]
We have the following information.
The volume of the reaction flask[tex]=2.00 \ L[/tex]
The concentration of [tex]N_{2}\left ( g \right )[/tex] at the equilibrium [tex]=2.80\times10^{-4}mol[/tex]
The concentration of [tex]O_{2}\left ( g \right )[/tex] at the equilibrium [tex]=2.50\times10^{-5}mol[/tex]
The concentration of [tex]N_{2}O\left ( g \right )[/tex] at the equilibrium [tex]=2.00\times 10^{-2} mol[/tex]
Calculation of equilibrium concentration:
[tex]\left [ N_{2} \left ( g \right )\right ]_{equ}=\frac{2.80\times 10^{-4}mol}{2.00L}[/tex]
[tex]=1.40\times 10^{-4}M[/tex]
[tex]\left [ O_{2}\left ( g \right ) \right ]_{equ}=\frac{2.50\times 10^{-5}mol}{2.00L}[/tex]
[tex]=1.25\times 10^{-5}M[/tex]
[tex]\left [ N_{2}O\left ( g \right ) \right ]_{equ}=\frac{2.00\times 10^{-2}mol}{2.00L}[/tex]
[tex]=1.00\times 10^{-2}M[/tex]
Now substitute the concentrations in equilibrium constant expression [tex]K=\frac{\left [ N_{2}O \right ]^{2}}{\left [ N_{2} \right ]^{2}\left [ O_{2} \right ]}\\K=\frac{\left ( 1.00\times 10^{-2} \right )^{2}}{\left ( 1.40\times 10\times -4 \right )^{2}\left ( 1.25\times 10^{-5} \right )}[/tex]
[tex]=4.08\times10^{8}[/tex]
Learn more about the topic Equilibrium Constant:
https://brainly.com/question/12858312