An amusement park ride consists of a rotating circular platform 11.4 m in diameter from which 10 kg seats are suspended at the end of 1.54 m massless chains. When the system rotates, the chains make an angle of 32.3 ◦ with the vertical. What is the speed of each seat?

Respuesta :

Explanation:

Formula for horizontal equilibrium is as follows.

           [tex]T sin (\theta) = m \times \frac{V^{2}}{r}[/tex]    

Now, we will calculate the radius as follows.

        r = [tex]\frac{D}{2}[/tex]

           = [tex]\frac{11.4 m}{2}[/tex]

           = 5.7 m

Also,   [tex]mg tan (\theta) = m \times \frac{V^{2}}{r}[/tex]

but from the figure r = [tex]L sin(\theta) + 5.7 m[/tex]

So,   r = [tex](1.54 \times sin (32.3) + 5.7)[/tex]

          = [tex]1.54 \times 0.77 \times 5.7[/tex]

          = 6.75 m

Now, we will calculate the velocity as follows.

            [tex]V^{2} = g \times tan (\theta) \times r[/tex]

                   V  = [tex]\sqrt(9.81 \times tan (32.3) \times 6.75)[/tex]

                     = 8.98 m/s

Thus, we can conclude that the speed of each seat is 8.98 m/s.

ACCESS MORE