Answer: Equilibrium concentration of [tex]I_2[/tex] = 0.00006 M
equilibrium concentration of [tex]Br_2[/tex] = 0.00006 M
and equilibrium concentration of [tex]IBr[/tex] = 0.00064 M
Explanation:
Initial moles of [tex]I_2[/tex] = 0.0019 mole
Volume of container = 5.0 L
Initial concentration of [tex]I_2=\frac{moles}{volume}=\frac{0.0019moles}{5.0L}=0.00038M[/tex]
initial concentration of [tex]Br_2=\frac{moles}{volume}=\frac{0.0019mole}{5.0L}=0.00038M[/tex]
The chemical reaction for the decomposition of phosgene follows the equation:
[tex]I_2(g)+Br_2(g)\rightleftharpoons 2IBr(g)[/tex]
Initial conc. 0.00038 M 0.00038 M 0
At eqm. conc. ( 0.00038-x) M (0.00038-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[IBr]^2}{[I_2]\times [Br_2]}[/tex]
[tex]108=\frac{[2x]^2}{(0.00038-x)^2}[/tex]
[tex]x=0.00032[/tex]
Thus equilibrium concentration of [tex]I_2[/tex] = (0.00038-x) M =(0.00038-0.00032) M = 0.00006 M
equilibrium concentration of [tex]Br_2[/tex] = (0.00038-x) M =(0.00038-0.00032) M = 0.00006 M
equilibrium concentration of [tex]IBr[/tex] = 2x M = 2(0.00032) M=0.00064 M