Respuesta :
Answer:
a) Figure attached
b) [tex]y=9.08 x -22.37[/tex]
See calculations and explanation below.
Step-by-step explanation:
For this case we have the following data given:
Grade Percentage That Said They Were More Likely to Purchase
6 32.7
8 46.1
10 75.0
12 83.6
Part a
We denote:
y = percentage who said they were more likely to purchase and x = grade
We can construct the scatterplot with Excel.
the result is on the figure attached
Part b
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =36[/tex]
[tex]\sum_{i=1}^n y_i =237.4[/tex]
[tex]\sum_{i=1}^n x^2_i =344[/tex]
[tex]\sum_{i=1}^n y^2_i =15808.46[/tex]
[tex]\sum_{i=1}^n x_i y_i =2318.2[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=344-\frac{36^2}{4}=20[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=2318.2-\frac{36*237.4}{4}=181.6[/tex]
And the slope would be:
[tex]m=\frac{181.6}{20}=9.08[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{36}{4}=9[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{237.4}{4}=59.35[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=59.35-(9.08*9)=-22.37[/tex]
So the line would be given by:
[tex]y=9.08 x -22.37[/tex]
![Ver imagen dfbustos](https://us-static.z-dn.net/files/d50/6045f4af2b2b70a2a2f5270c64cad518.jpg)