Answer:
[tex]v=1.5m/s[/tex]
Explanation:
The gravitational potential energy gets transformed into translational and rotational kinetic energy, so we can write [tex]mgh=\frac{mv^2}{2}+\frac{I\omega^2}{2}[/tex]. Since [tex]v=r\omega[/tex] (the ball rolls without slipping) and for a solid sphere [tex]I=\frac{2mr^2}{5}[/tex], we have:
[tex]mgh=\frac{mv^2}{2}+\frac{2mr^2\omega^2}{2*5}=\frac{mv^2}{2}+\frac{mv^2}{5}=\frac{7mv^2}{10}[/tex]
So our translational speed will be:
[tex]v=\sqrt{\frac{10gh}{7}}=\sqrt{\frac{10(9.8m/s^2)(0.161m)}{7}}=1.5m/s[/tex]