Respuesta :

Answer:0.2588

Step-by-step explanation:

Answer:

[tex]\frac{1}{4}[/tex] ( [tex]\sqrt{6}[/tex] - [tex]\sqrt{2}[/tex] )

Step-by-step explanation:

Using the sine addition formula

sin(a + b) = sinacosb + cosasinb

and the exact values

sin45° = cos45° = [tex]\frac{\sqrt{2} }{2}[/tex] , sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , cos60° = [tex]\frac{1}{2}[/tex]

Given

sin165°

Note that 165° = (120 + 45)°, thus

= sin(120 + 45)°

= sin120°cos45° + cos120°sin45°

= sin60°cos45° - cos60°sin45°

= ( [tex]\frac{\sqrt{3} }{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] ) - ( [tex]\frac{1}{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] )

= [tex]\frac{\sqrt{6} }{4}[/tex] - [tex]\frac{\sqrt{2} }{4}[/tex]

= [tex]\frac{1}{4}[/tex] ( [tex]\sqrt{6}[/tex] - [tex]\sqrt{2}[/tex] )

ACCESS MORE