Respuesta :
Answer:
a) Therefore, the minimum value of the function f is -1/2.
Therefore, the maximum value of the function f is 1/2.
b)Therefore, the minimum value of the function f is 1.
Therefore, the maximum value of the function f is 16.
Step-by-step explanation:
We find the maximum and minimum values attained by the function f along the path c(t). From exercise we have:
a)
[tex]f(x,y)=xy\\\\c(t)=(\cos t, \sin t)\\\\\0\leq t\leq 2\pi\\[/tex]
Therefore, we get:
[tex]f(x,y)=xy\\\\f(x,y)=\cos t \cdot \sin t\\\\f(x,y)=\frac{1}{2} \sin 2t[/tex]
We know that:
[tex]-1\leq \sin 2t\leq 1\\\\\implies -\frac{1}{2} \leq \frac{1}{2}\sin 2t\leq \frac{1}{2}\\\\\implies -\frac{1}{2}\leq f(x, y)\leq \frac{1}{2}[/tex]
Therefore, the minimum value of the function f is -1/2.
Therefore, the maximum value of the function f is 1/2.
We use software to drawn a graph.
b)
[tex]f(x,y)=x^2+y^2\\\\c(t)=(\cos t, 4\sin t)\\\\0\leq t\leq 2\pi\\[/tex]
Therefore, we get:
[tex]f(x,y)=x^2+y^2\\\\f(x,y)=(\cos t)^2 \cdot (4\sin t)^2\\\\f(x,y)=\cos^2t+16\sin^2t\\\\f(x,y)=\cos^2t+\sin^2t+15\sin^2t\\\\f(x,y)=1+15\sin^2t[/tex]
We know that:
[tex]0\leq \sin^2t\leq 1\\\\\implies 0\leq 15\sin^2t\leq 15\\\\1\leq 1+15\sin^2t\leq 16\\\\ \implies 1\leq f(x,y) \leq 16[/tex]
Therefore, the minimum value of the function f is 1.
Therefore, the maximum value of the function f is 16.
We use software to drawn a graph.
![Ver imagen vlatkostojanovic](https://us-static.z-dn.net/files/dcf/848c84f161d50f6fd1d84646850a85c7.png)
![Ver imagen vlatkostojanovic](https://us-static.z-dn.net/files/d45/2794a2c101362571299e7d8d1c80d907.png)