Respuesta :

Answer:

As the lengths of the two sides is equal. i.e. WY =  WX [tex]=\sqrt{74}[/tex]. Therefore, the  triangle WXY is an isosceles triangle.

Step-by-step explanation:

Considering the triangle with the vertices

  • W(-10, 4)
  • X(-3, -1)
  • Y(-5, 11)

The distance between the W(-10, 4) and Y(-5, 11) is the length of the side WY.

So,

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]\mathrm{The\:distance\:between\:}\left(-10,\:4\right)\mathrm{\:and\:}\left(-5,\:11\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(-5-\left(-10\right)\right)^2+\left(11-4\right)^2}[/tex]

[tex]=\sqrt{\left(-5+10\right)^2+\left(11-4\right)^2}[/tex]

[tex]=\sqrt{5^2+7^2}[/tex]

[tex]=\sqrt{5^2+7^2}[/tex]

[tex]=\sqrt{74}[/tex]

So, the length of the side WY [tex]=\sqrt{74}[/tex].

Similarly,

The distance between the W(-10, 4) and X(-3, -1) is the length of the side WX.

[tex]\mathrm{The\:distance\:between\:}\left(-10,\:4\right)\mathrm{\:and\:}\left(-3,\:-1\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(-3-\left(-10\right)\right)^2+\left(-1-4\right)^2}[/tex]

[tex]=\sqrt{\left(-3+10\right)^2+\left(-1-4\right)^2}[/tex]

[tex]=\sqrt{49+5^2}[/tex]

[tex]=\sqrt{49+25}[/tex]

[tex]=\sqrt{74}[/tex]

So, the length of the side WX [tex]=\sqrt{74}[/tex].

As the lengths of the two sides is equal. i.e. WY =  WX [tex]=\sqrt{74}[/tex]. Therefore, the  triangle WXY is an isosceles triangle.

ACCESS MORE