Answer:
1. [tex]V=22.0407\ V[/tex]
2. [tex]Q=9126837\ J[/tex]
Explanation:
Given:
length of copper cable, [tex]l=140\ km=1.4\times 10^5\ m[/tex]
diameter of copper cable, [tex]d=12.5\ cm=0.125\ m[/tex]
current through the copper wire, [tex]i=115\ A[/tex]
We have the resistivity of copper, [tex]\rho=1.68\times10^{-8}\ \Omega.m[/tex]
We know that the resistance of a wire is given as:
[tex]R=\rho.\frac{l}{a}[/tex]
where:
[tex]a=[/tex] cross sectional area of the wire
[tex]R=1.68\times 10^{-8}\times\frac{140000}{\pi.\frac{0.125^2}{4} }[/tex]
[tex]R=0.1917\ \Omega[/tex]
1.
Now from the Ohm's law:
[tex]V=R.i[/tex]
[tex]V=0.1917\times 115[/tex]
[tex]V=22.0407\ V[/tex]
2.
From the Joules law the thermal energy generated as an effect of electrical energy is mathematically given as:
[tex]Q=i^2.R.t[/tex]
where:
[tex]t=[/tex] time duration for which the current flows
[tex]Q=115^2\times 0.1917\times 3600[/tex] (∵ we have 3600 seconds in 1 hour)
[tex]Q=9126837\ J[/tex]