Respuesta :
Answer:
V_c=5.037 m/s
Explanation:
SOLUTION:
applying the conversation of energy, taking the datum at B
[tex]T_{A} +V_{A} =T_{B} +V_{B}[/tex]
[tex]T_{A} =\frac{1}{2}(m_{c} +m_{b} )v_{a^2} =\frac{1}{2}(3+0.5)(0)^2\\V_{A}=(m_{c} +m_{b} )gh_{A} =(3+0.5)*9.81*1.25=42.918J\\T_{B}=\frac{1}{2}(m_{c} +m_{b} )v_{B} ^2=\frac{1}{2}(3+0.5)v_{B} ^2=1.754v_{B} ^2\\\\[/tex]
V_b=(m_c+m_b)gh_a=(3+0.5)*9.81*0=0 J
V_b=4.95 m/s
applying the conversation of linear momentum,
(m_c+m_b)V_b=m_c*V_c+m_b*V_b
V_b=6*V_c-34.66 (1)
utilising the relative velocity relation,
V_b/c=V_b-V_c
V_b=0.6-V_c (2)
from (1) (2)
6*V_c-34.66=0.6-V_c
7*V_c=35.26
the final velocity of the cart is
V_c=5.037 m/s
into (2)
V_b=0.6-V_c
V_b=0.6-5.037
= 4.437
Answer: v = (3u/3.5)m/s
Explanation:
Initial velocity = u m/s
Final velocity = v m/s
Total mass of cart and bullet = (3 + 0.5) Kg = 3.5 Kg
Momentum before collision = 3 X u m/s = 3u
Momentum after collision = 3.5 X v m/s = 3.5v
∴ Momentum before collision = Momentum after collision
3u = 3.5v
v = (3u/3.5)m/s