Answer:
a) [tex]F=429.261\ N[/tex]
b) [tex]\beta=45.8494^{\circ}[/tex] with respect to the west direction.
c) [tex]F=429.261\ N[/tex]
d) [tex]\beta'=135.85^{\circ}[/tex] with respect to the west direction.
Explanation:
Given:
a)
The magnitude of resultant force:
[tex]F=\sqrt{(299)^2+(308)^2}[/tex]
[tex]F=429.261\ N[/tex]
b)
Now the direction of the force:
[tex]\tan\beta=\frac{F_n}{F_w}[/tex]
[tex]\tan\beta=\frac{299}{308}[/tex]
[tex]\beta=45.8494^{\circ}[/tex] with respect to the west direction.
c) The magnitude of the resultant will remain the same.
[tex]F=\sqrt{(299)^2+(-308)^2}[/tex]
[tex]F=429.261\ N[/tex]
d)
For the angle with respect to the west:
[tex]\tan\phi=\frac{308}{299}[/tex]
[tex]\phi=45.84^{\circ}[/tex]
Now from the schematic:
[tex]\beta'=90+45.85[/tex]
[tex]\beta'=135.85^{\circ}[/tex] with respect to the west direction.