Answer:
261.3 m/s
Explanation:
Mass of bullet=m=15 g=[tex]\frac{15}{1000}=0.015 kg[/tex]
1 kg=1000g
Mass of block=M=3 kg
d=0.086 m
Total mass =M+m=3+0.015=3.015 kg
K.E at the time strike=Gravitational potential energy at the end of swing
[tex]\frac{1}{2}(m+M)^2V^2=(m+M)gh[/tex]
Using g=[tex]9.8m/s^2[/tex]
Substitute the values
[tex]\frac{1}{2}(3.015)V^2=3.015\times 9.8\times 0.086[/tex]
[tex]V^2=\frac{2\times 3.015\times 9.8\times 0.086}{3.015}[/tex]
[tex]V=\sqrt{2\times 3.015\times 9.8\times 0.086}}[/tex]
[tex]V=1.3m/s[/tex]
Velocity after collision=V=1.3 m/s
Velocity of block=v'=0
Using conservation law of momentum
[tex]mv+Mv'=(m+M)V[/tex]
Using the formula
[tex]0.015v+3(0)=3.015(1.3)[/tex]
[tex]0.015v=3.015(1.3)[/tex]
[tex]v^2=\frac{3.015(1.3)}{0.015}=261.3[/tex]
[tex]v=261.3 m/s[/tex]