Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia
[tex]I_1=\dfrac{M+m}{2}r^2[/tex]
[tex]I_1=\dfrac{15+9}{2}\times 0.25^2\ kg.m^2[/tex]
[tex]I_1=0.75\ kg.m^2[/tex]
Final mass moment of inertia
[tex]I_2=\dfrac{M}{2}r^2[/tex]
[tex]I_2=\dfrac{15}{2}\times 0.25^2\ kg.m^2[/tex]
[tex]I_2=0.468\ kg.m^2[/tex]
Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂
[tex]\omega_2=\dfrac{0.75\times 0.75}{0.468}\ rad/s [/tex]
ω₂=1.20