A simple pendulum consists of a ball of mass 4.6 kg hanging from a uniform string of mass 0.0601 g and length L. The period of oscillation for the pendulum is 1.43 s. Determine the speed of a transverse wave in the string when the pendulum is stationary and hangs vertically. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m/s.

Respuesta :

Answer:

612.9 m/s

Explanation:

We are given that

Mass=M=4.6 kg

Mass of string=m=0.0601 g=[tex]0.0601\times 10^{-3} kg[/tex]

[tex]1 kg=10^3 g[/tex]

Length of pendulum=L

Time period=T=1.43 s

We have to determine the speed of transverse wave in the string.

Length of pendulum=[tex]L=\frac{T^2g}{4\pi^2}[/tex]

Where [tex]g=9.8m/s^2[/tex]

[tex]\pi=3.14[/tex]

T=Time period

Length of pendulum=[tex]L=\frac{(1.43)^2\times 9.8}{4\times (3.14)^2}[/tex]

Length of pendulum=L=0.51 m

Mass per unit length=[tex]\mu=\frac{m}{L}=\frac{0.0601\times 10^{-3}}{0.51}=1.2\times 10^{-4}kg/m[/tex]

Tension in the string=[tex]Mg=4.6\times 9.8=45.08 N[/tex]

Speed of the wave=[tex]v=\sqrt{\frac{T}{\mu}}[/tex]

Where T=Tension in the string

Using the formula

Speed of the transverse wave=[tex]v=\sqrt{\frac{45.08}{1.2\times 10^{-4}}}[/tex]m/s

Speed of the transverse wave=612.9 m/s