Answer:
612.9 m/s
Explanation:
We are given that
Mass=M=4.6 kg
Mass of string=m=0.0601 g=[tex]0.0601\times 10^{-3} kg[/tex]
[tex]1 kg=10^3 g[/tex]
Length of pendulum=L
Time period=T=1.43 s
We have to determine the speed of transverse wave in the string.
Length of pendulum=[tex]L=\frac{T^2g}{4\pi^2}[/tex]
Where [tex]g=9.8m/s^2[/tex]
[tex]\pi=3.14[/tex]
T=Time period
Length of pendulum=[tex]L=\frac{(1.43)^2\times 9.8}{4\times (3.14)^2}[/tex]
Length of pendulum=L=0.51 m
Mass per unit length=[tex]\mu=\frac{m}{L}=\frac{0.0601\times 10^{-3}}{0.51}=1.2\times 10^{-4}kg/m[/tex]
Tension in the string=[tex]Mg=4.6\times 9.8=45.08 N[/tex]
Speed of the wave=[tex]v=\sqrt{\frac{T}{\mu}}[/tex]
Where T=Tension in the string
Using the formula
Speed of the transverse wave=[tex]v=\sqrt{\frac{45.08}{1.2\times 10^{-4}}}[/tex]m/s
Speed of the transverse wave=612.9 m/s