(a) Find a vector-parametric equation r⃗ 1(t)=⟨x(t),y(t),z(t)⟩r→1(t)=⟨x(t),y(t),z(t)⟩ for the shadow of the circular cylinder x2+z2=5x2+z2=5 in the xzxz-plane. Shadow: r⃗ 1(t)=r→1(t)= for 0≤t≤2π0≤t≤2π. (b) Find a vector-parametric equation for intersection of the circular cylinder x2+z2=5x2+z2=5 and the plane 3x+2y+8z=13x+2y+8z=1. Intersection: r⃗ 2(t)=r→2(t)= for 0≤t≤2π0≤t≤2π.

Respuesta :

Answer: (a) r1(t) = <2cost , 0 , 2sint>

(b) <2cost , (1 - 12sint - 10cost)/8 , 2sint>

Step-by-step explanation:

x2+z2=4

a)

Now, in the xz plane, we know that y = 0...

So, x^2 + z^2 = 4 will simply be a circle centered at (0,0)..

This can be easily parameterized as

x = 2cos(t)

z = 2sin(t)

So, the required parameterization is :

r1(t) = <2cost , 0 , 2sint>

b)

Cylinder : x^2 + z^2 = 4

Plane : 5x+8y+6z=1

Easily enough, the x^2 + z^2 = 4 can again be parameterized as

x = 2cost , z = 2sint

With this, we can find y using plane equation...

5x+8y+6z=1

5(2cost) + 8y + 6(2sint) = 1

8y = 1 - 12sint - 10cost

y = (1 - 12sint - 10cost)/8

So, the parameterization is :

<2cost , (1 - 12sint - 10cost)/8 , 2sint>

(a). Parametric equation is, [tex]r_{1}(t) = <2cost , 0 , 2sint>[/tex]

(b). Parametric equation is, [tex]r_{2}(t)=<2cost , (1 - 12sint - 10cost)/8 , 2sint>[/tex]

Parametric equation:

It is a type of equation that employs an independent variable called a parameter .

                [tex]x^{2} +y^{2}=r^{2}[/tex]

Parametric equation is,  [tex]x=rcost,y=rsint[/tex]

(a). Now, in the XZ- plane, we know that y = 0

So, [tex]x^2 + z^2 = 4[/tex] will simply be a circle centered at (0,0)

This can be easily parameterized as

           [tex]x = 2cos(t)[/tex]

           [tex]z = 2sin(t)[/tex]

So, the required parameterization is :

           [tex]r_{1}(t) = <2cost , 0 , 2sint>[/tex]

(b). Given that,  equation of Cylinder : [tex]x^2 + z^2 = 4[/tex]

and equation of Plane : 5x+8y+6z=1

the [tex]x^2 + z^2 = 4[/tex] can again be parameterized as

   [tex]x = 2cost , z = 2sint[/tex]

Substituting value of x and z in equation 5x+8y+6z=1

[tex]5(2cost) + 8y + 6(2sint) = 1[/tex]

[tex]8y = 1 - 12sint - 10cost[/tex]

[tex]y = \frac{(1 - 12sint - 10cost)}{8}[/tex]

So, the parametric equation  is :

              [tex]<2cost , (1 - 12sint - 10cost)/8 , 2sint>[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/51019

ACCESS MORE