Respuesta :
Answer: (a) r1(t) = <2cost , 0 , 2sint>
(b) <2cost , (1 - 12sint - 10cost)/8 , 2sint>
Step-by-step explanation:
x2+z2=4
a)
Now, in the xz plane, we know that y = 0...
So, x^2 + z^2 = 4 will simply be a circle centered at (0,0)..
This can be easily parameterized as
x = 2cos(t)
z = 2sin(t)
So, the required parameterization is :
r1(t) = <2cost , 0 , 2sint>
b)
Cylinder : x^2 + z^2 = 4
Plane : 5x+8y+6z=1
Easily enough, the x^2 + z^2 = 4 can again be parameterized as
x = 2cost , z = 2sint
With this, we can find y using plane equation...
5x+8y+6z=1
5(2cost) + 8y + 6(2sint) = 1
8y = 1 - 12sint - 10cost
y = (1 - 12sint - 10cost)/8
So, the parameterization is :
<2cost , (1 - 12sint - 10cost)/8 , 2sint>
(a). Parametric equation is, [tex]r_{1}(t) = <2cost , 0 , 2sint>[/tex]
(b). Parametric equation is, [tex]r_{2}(t)=<2cost , (1 - 12sint - 10cost)/8 , 2sint>[/tex]
Parametric equation:
It is a type of equation that employs an independent variable called a parameter .
[tex]x^{2} +y^{2}=r^{2}[/tex]
Parametric equation is, [tex]x=rcost,y=rsint[/tex]
(a). Now, in the XZ- plane, we know that y = 0
So, [tex]x^2 + z^2 = 4[/tex] will simply be a circle centered at (0,0)
This can be easily parameterized as
[tex]x = 2cos(t)[/tex]
[tex]z = 2sin(t)[/tex]
So, the required parameterization is :
[tex]r_{1}(t) = <2cost , 0 , 2sint>[/tex]
(b). Given that, equation of Cylinder : [tex]x^2 + z^2 = 4[/tex]
and equation of Plane : 5x+8y+6z=1
the [tex]x^2 + z^2 = 4[/tex] can again be parameterized as
[tex]x = 2cost , z = 2sint[/tex]
Substituting value of x and z in equation 5x+8y+6z=1
[tex]5(2cost) + 8y + 6(2sint) = 1[/tex]
[tex]8y = 1 - 12sint - 10cost[/tex]
[tex]y = \frac{(1 - 12sint - 10cost)}{8}[/tex]
So, the parametric equation is :
[tex]<2cost , (1 - 12sint - 10cost)/8 , 2sint>[/tex]
Learn more about the Parametric equation here:
https://brainly.com/question/51019