Respuesta :
Answer : The mass of excess [tex]AgNO_3[/tex], [tex]CuNO_3[/tex] and Ag is, 1.16 g, 0.992 g and 0.849 g respectively.
Solution : Given,
Mass of Cu = 0.500 g
Mass of [tex]AgNO_3[/tex] = 2.500 g
Molar mass of Cu = 63.5 g/mole
Molar mass of Ag = 108 g/mole
Molar mass of [tex]AgNO_3[/tex] = 170 g/mole
Molar mass of [tex]CuNO_3[/tex] = 126 g/mole
First we have to calculate the moles of Cu and [tex]AgNO_3[/tex].
[tex]\text{ Moles of }Cu=\frac{\text{ Mass of }Cu}{\text{ Molar mass of }Cu}=\frac{0.500g}{63.5g/mole}=0.00787moles[/tex]
[tex]\text{ Moles of }AgNO_3=\frac{\text{ Mass of }AgNO_3}{\text{ Molar mass of }AgNO_3}=\frac{2.500g}{170g/mole}=0.0147moles[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]Cu+AgNO_3\rightarrow CuNO_3+Ag[/tex]
From the balanced reaction we conclude that
As, 1 mole of [tex]Cu[/tex] react with 1 mole of [tex]AgNO_3[/tex]
So, 0.00787 moles of [tex]Cu[/tex] react with 0.00787 moles of [tex]AgNO_3[/tex]
From this we conclude that, [tex]AgNO_3[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]Cu[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of excess [tex]AgNO_3[/tex]
Moles of excess [tex]AgNO_3[/tex] = 0.0147 - 0.00787 = 0.00683 moles
Now we have to calculate the moles of [tex]CuNO_3[/tex] and Ag.
From the reaction, we conclude that
As, 1 mole of [tex]Cu[/tex] react to give 1 mole of [tex]CuNO_3[/tex]
So, 0.00787 moles of [tex]Cu[/tex] react to give 0.00787 moles of [tex]CuNO_3[/tex]
and,
As, 1 mole of [tex]Cu[/tex] react to give 1 mole of [tex]Ag[/tex]
So, 0.00787 moles of [tex]Cu[/tex] react to give 0.00787 moles of [tex]Ag[/tex]
Now we have to calculate the mass of excess [tex]AgNO_3[/tex], [tex]CuNO_3[/tex] and Ag.
[tex]\text{ Mass of excess }AgNO_3=(0.00683moles)\times (170g/mole)=1.16g[/tex]
and,
[tex]\text{ Mass of }CuNO_3=\text{ Moles of }CuNO_3\times \text{ Molar mass of }CuNO_3[/tex]
[tex]\text{ Mass of }CuNO_3=(0.00787moles)\times (126g/mole)=0.992g[/tex]
and,
[tex]\text{ Mass of }Ag=\text{ Moles of }Ag\times \text{ Molar mass of }Ag[/tex]
[tex]\text{ Mass of }Ag=(0.00787moles)\times (108g/mole)=0.849g[/tex]
Thus, the mass of excess [tex]AgNO_3[/tex], [tex]CuNO_3[/tex] and Ag is, 1.16 g, 0.992 g and 0.849 g respectively.