Answer:
Therefore, the volume of the cone is V=4π.
Step-by-step explanation:
From task we have a circular cone with radius 2 m and height 3 m. We use the disk method to find the volume of this cone.
We have the formula:
[tex]\boxed{V=\int_0^h\pi \cdot \left(\frac{r}{h}x\right)^2\, dx}[/tex]
We know that r=2 and h=3, and we get:
[tex]V=\int_0^3\pi \cdot \left(\frac{2}{3}x\right)^2\, dx\\\\V=\int_0^3 \pi \frac{4}{9}x^2\, dx\\\\V= \frac{4\pi}{9} \int_0^3 x^2\, dx\\\\V= \frac{4\pi}{9} \left[\frac{x^3}{3}\right]_0^3\, dx\\\\V= \frac{4\pi}{9}\cdot 9\\\\V=4\pi[/tex]
Therefore, the volume of the cone is V=4π.