Respuesta :
Answer:
The 95% confidence interval for true mean error is (4.57, 4.63).
Step-by-step explanation:
Let X = the number of errors of a billing program.
According to the Central limit theorem if a large sample (n > 30) is drawn from an unknown population then the sampling distribution of the sample mean will follow a Normal distribution with mean ([tex]\mu_{\bar x}=\mu[/tex]) and standard deviation ([tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}[/tex]).
The sample size of the loans is, n = 1000.
The mean is, [tex]{\bar x}=4.6[/tex].
The standard deviation is, [tex]\sigma_{\bar x}=\frac{0.50}{\sqrt{1000}}=0.016[/tex]
The confidence interval for mean is:
[tex]CI=\bar x\pm z_{\alpha /2}\times \sigma_{\bar x}[/tex]
The critical value of z for 95% confidence interval is:
[tex]z_{\alpha /2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
**Use the z-table for critical values.
Compute the 95% confidence interval for true mean error as follows:
[tex]CI=\bar x\pm z_{\alpha /2}\times \sigma_{\bar x}\\=4.6\pm1.96\times0.016\\=4.6\pm0.03136\\=(4.56864, 4.63136)\\\approx(4.57, 4.63)[/tex]
Thus, the 95% confidence interval for true mean error is (4.57, 4.63).
Answer:
95% confidence interval on the true mean error rate = [4.57 , 4.63] .
Step-by-step explanation:
We are given that to examine a particular program, a simulation of 1000 typical loans is run through the program. The simulation yielded a Mean,[tex]Xbar[/tex] = 4.6 errors with a Standard deviation,s = 0.5.
Since, here we know nothing about population standard deviation so we will use t statistics quantity here i.e.;
[tex]\frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex] where, [tex]Xbar[/tex] = sample mean
s = sample standard deviation
n = sample size(no. of simulations)
[tex]\mu[/tex] = population mean or true mean
So, 95% confidence interval on the true mean error rate is given by;
P(-1.96 < [tex]t_9_9_9[/tex] < 1.96) = 0.95 {because at 5% significance level t table gives
value close to 1.96}
P(-1.96 < [tex]\frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.96) = 0.95
P(-1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]Xbar - \mu[/tex] < 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95
P(-Xbar - 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]-\mu[/tex] < Xbar - 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95
P( Xbar - 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < Xbar + 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95
95% Confidence interval for [tex]\mu[/tex] = [Xbar - 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] , Xbar + 1.96 * [tex]\frac{s}{\sqrt{n} }[/tex] ]
= [tex][4.6 - 1.96*\frac{0.5}{\sqrt{1000} } , 4.6 + 1.96*\frac{0.5}{\sqrt{1000} } ][/tex]
= [4.57 , 4.63]
Therefore, 95% confidence interval on the true mean error rate is [4.57 , 4.63] .