Answer:
[tex]\Delta T=\dfrac{1}{4\ c }v_i^2[/tex]
Explanation:
Given that
mass of the bullet = m
Speed of the bullet = vi
Therefore the kinetic energy of the bullet KE will be
[tex]KE=\dfrac{1}{2}mv_i^2[/tex]
Given that 50 % of the kinetic energy is converted into thermal energy.
KE'= 0.5 KE
The thermal energy Q is given as
Q= m c ΔT
Q=Heat
m=mass
c=specific heat capacity
ΔT=Temperature difference
Therefore we can say that
Q= KE'
[tex]Q=0.5\times \dfrac{1}{2}mv_i^2[/tex]
[tex]m\ c\ \Delta T=0.5\times \dfrac{1}{2}mv_i^2[/tex]
[tex]c\ \Delta T=0.5\times \dfrac{1}{2}v_i^2[/tex]
[tex]\Delta T=\dfrac{1}{4\ c}v_i^2[/tex]
Therefore the increase in temperature is given as
[tex]\Delta T=\dfrac{1}{4\ c' }v_i^2[/tex]