Answer:
Part A [tex]m = 97.37[/tex] Kg
Part B [tex]H = 4.59[/tex] meters
Explanation:
Part A
Pressure is equal to force per unit area
[tex]P = \frac{F}{A}[/tex]
Here force is equal to the weight of the piston
Thus
[tex]P = \frac{m*g}{A}[/tex]
On rearranging the equation, we get -
[tex]m = \frac{PA}{g} \\[/tex][tex]m = \frac{P\pi r^2}{g}[/tex]
Substituting the given values we get
[tex]m = \frac{0.3*1.013*10^5*0.1^2}{9.8} \\m = 97.37[/tex]
Part B
We know that
[tex]V = \pi r^2h\\[/tex]
On substituting the given values we get -
[tex]pV = nRT\\V = \frac{nRT}{p}[/tex]
[tex]V = \frac{1.8*8.314*293}{0.3039*10^5} \\V = 0.1442 m^3[/tex]
Height
[tex]= \frac{V}{\pi r^2} \\= \frac{0.1442}{\pi 0.1^2} \\= 4.59[/tex]