Answer:
Therefore, the solution is:
[tex]\boxed{\int \sin 7x\, dx=-\frac{\cos 7x}{7}}[/tex]
Step-by-step explanation:
We calculate the given integral. We use the substitution t = 7x.
[tex]\int \sin 7x\, dx=\begin{vmatrix} 7x=t\\ 7\, dx=dt\\ dx=\frac{dt}{7} \end{vmatrix}\\\\=\int \sin t \cdot \frac{1}{7}\, dt\\\\=\frac{1}{7}\cdot (-\cos t)\\\\=-\frac{\cos 7x}{7}[/tex]
Therefore, the solution is:
[tex]\boxed{\int \sin 7x\, dx=-\frac{\cos 7x}{7}}[/tex]