Answer:
[tex]33.6\times10^{-4}}\text{ m}[/tex] = 3.36 mm
Explanation:
From Ohm's law,
[tex]V = IR[/tex] (Voltage = Current * Resistance)
[tex]R = \dfrac{V}{I}[/tex]
The geometric definition of resistance is
[tex]R = \rho\dfrac{l}{A}[/tex]
where [tex]\rho[/tex] is the resistivity of the material, [tex]l[/tex] and [tex]A[/tex] are the length and cross-sectional area, respectively.
[tex]A = \rho\dfrac{l}{R}[/tex]
[tex]A = \rho\dfrac{l\timesI}{V}[/tex]
Since the wire is assumed to have a circular cross-section, its area is given by
[tex]A = \pi\dfrac{d^2}{4}[/tex] where [tex]d[/tex] is the diameter.
[tex]\pi\dfrac{d^2}{4} = \rho\dfrac{l\timesI}{V}[/tex]
[tex]d = \sqrt{\dfrac{4\rho l I}{\pi\times V}}[/tex]
Resistivity of copper = [tex]1.68\times10^{-8}[/tex]. With these and other given values,
[tex]d = \sqrt{\dfrac{4\times1.68\times10^{-8}\times1.5\times290}{3.14\times 0.55}}[/tex]
[tex]d = \sqrt{1128.43\times10^{-8}}[/tex]
[tex]d = 33.6\times10^{-4} \text{ m}[/tex]