Answer:
8 Roses; 1 lilie ; 3 irises
Step-by-step explanation:
Let the number of roses be 'a' , number lilies be 'b' and number of irises be 'c'
$300 for 10 centerpieces means $30 per centerpiece. therefore,
[tex]2.5a+4b+2c = 30[/tex] .......................(1)
also each centerpiece must contain 12 flowers, therefore,
[tex]a+b+c=12[/tex] .................................(2)
also twice as much roses as the number of irises and lilies combined
[tex]a = 2(b+c)[/tex]
[tex]a-2b-2c=0[/tex] ............................... (3)
a) System of equation are equations (1) , (2) & (3).
Writing a matrix equation
[tex]\left[\begin{array}{ccc}2.5a&4b&2c\\a&b&c\\a&-2b&-2c\end{array}\right] = \left[\begin{array}{ccc}30\\12\\0\end{array}\right][/tex]
b) Solving the simultaneous equation,
from (3), [tex]a=2b+2c[/tex]
substituting for 'a' in equation (1) and (2),
⇒ 2.5(2b+2c)+4b+2c=30
⇒ 5b + 5c + 4b + 2c = 30
⇒ 9b + 7c = 30 ..................... (4)
⇒ 2b + 2c + b + c = 12
⇒ 3b + 3c = 12
⇒ b = 4 - c ..............................(5)
Substituting (5) in (4)
9 (4 - c) + 7c = 30
36 - 9c+7c =30
36-30 = 2c
c = 3
b = 4-3 = 1
a = 2(3+1) = 8