Answer:
0.022kg/s
Explanation:
We are given that
Mass of boiled egg=46 g=[tex]\frac{46}{1000} kg=0.046 kg[/tex]
[tex] 1kg=1000 g[/tex]
Constant force=F=25.6 N/m
Initial displacement=[tex]A_1=0.296 m[/tex]
Final displacement=[tex]A_2=0.12 m[/tex]
Time=t=4.55 s
Damping force=[tex]F_x=-bv_x[/tex]
We have to find the magnitude of damping constant b.
We know that the displacement of the oscillator under damping motion is given by
[tex]x=Ae^{-\frac{b}{2m}t}cos(w't+\phi)[/tex]
For maximum displacement [tex]cos(w't+\phi)=1[/tex]
Therefore , [tex]x=A_2[/tex]
Substitute the values
[tex]A_2=A_1e^{-\frac{-b}{2m}t}[/tex]
[tex]e^{-\frac{b}{2m}t}=\frac{A_2}{A_1}[/tex]
[tex]-\frac{b}{2m}t=ln\frac{A_2}{A_1}[/tex]
[tex]lnx=y\implies x=e^y[/tex]
Substitute the values
[tex]-\frac{b}{2\times 0.046}\times 4.55=ln\frac{0.12}{0.296}[/tex]
[tex]\frac{2\times 0.046}{4.55b}=ln\frac{0.296}{0.12}[/tex]
[tex]\frac{2\times 0.046}{4.55}=0.9b[/tex]
[tex]b=\frac{2\times 0.46}{4.55\times 0.9}=0.022kg/s[/tex]
Hence,the magnitude of damping constant b=0.022kg/s