contestada

A hard-boiled egg of mass 46.0 gg moves on the end of a spring with force constant 25.6 N/mN/m . The egg is released from rest at an initial displacement of 0.296 mm . A damping force Fx=−bvxFx=−bvx acts on the egg, and the amplitude of the motion decreases to 0.120 mm in a time of 4.55 ss .

Respuesta :

Answer:

0.022kg/s

Explanation:

We are given that

Mass of boiled egg=46 g=[tex]\frac{46}{1000} kg=0.046 kg[/tex]

[tex] 1kg=1000 g[/tex]

Constant force=F=25.6 N/m

Initial displacement=[tex]A_1=0.296 m[/tex]

Final displacement=[tex]A_2=0.12 m[/tex]

Time=t=4.55 s

Damping force=[tex]F_x=-bv_x[/tex]

We have to find the  magnitude of damping constant b.

We know that the displacement of the oscillator under damping motion is given by

[tex]x=Ae^{-\frac{b}{2m}t}cos(w't+\phi)[/tex]

For maximum displacement [tex]cos(w't+\phi)=1[/tex]

Therefore , [tex]x=A_2[/tex]

Substitute the values

[tex]A_2=A_1e^{-\frac{-b}{2m}t}[/tex]

[tex]e^{-\frac{b}{2m}t}=\frac{A_2}{A_1}[/tex]

[tex]-\frac{b}{2m}t=ln\frac{A_2}{A_1}[/tex]

[tex]lnx=y\implies x=e^y[/tex]

Substitute the values

[tex]-\frac{b}{2\times 0.046}\times 4.55=ln\frac{0.12}{0.296}[/tex]

[tex]\frac{2\times 0.046}{4.55b}=ln\frac{0.296}{0.12}[/tex]

[tex]\frac{2\times 0.046}{4.55}=0.9b[/tex]

[tex]b=\frac{2\times 0.46}{4.55\times 0.9}=0.022kg/s[/tex]

Hence,the  magnitude of damping constant b=0.022kg/s

ACCESS MORE