A sample of 5 strings of thread is randomly selected and the following thicknesses are measured in millimeters. Give a point estimate for the population variance. Round your answer to three decimal places. 1.15,1.24,1.15,1.27,1.13

Respuesta :

Answer:

Point estimate for the population variance = 3.92 * [tex]10^{-3}[/tex] .

Step-by-step explanation:

We are given that a sample of 5 strings of thread is randomly selected and the following thicknesses are measured in millimeters ;

       X                       X - [tex]Xbar[/tex]                                         [tex](X-Xbar)^{2}[/tex]

      1.13            1.13 - 1.188 = -0.058                                 3.364 * [tex]10^{-3}[/tex]

      1.15            1.15 - 1.188 = -0.038                                 1.444 * [tex]10^{-3}[/tex]    

      1.15            1.15 - 1.188 = -0.038                                 1.444 * [tex]10^{-3}[/tex]

      1.24           1.24 - 1.188 = 0.052                                 2.704 * [tex]10^{-3}[/tex]

      1.27           1.27 - 1.188 = 0.082                                6.724 * [tex]10^{-3}[/tex]    

                                                                    [tex]\sum (X-Xbar)^{2}[/tex] = 0.01568  

Firstly, Mean of above data, [tex]Xbar[/tex] = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{1.15+1.24+1.15+1.27+1.13}{5}[/tex] = 1.188

Point estimate of Population Variance = Sample variance

                                                               = [tex]\frac{\sum (X-Xbar)^{2}}{n-1}[/tex] = [tex]\frac{0.01568}{4}[/tex] = 3.92 * [tex]10^{-3}[/tex] .

Therefore, point estimate for the population variance = 3.92 * [tex]10^{-3}[/tex] .

       

Answer:

S² = 0.004

Step-by-step explanation:

Point estimate for the population variance is S²

[tex]S^{2}=\frac{\sum (x_{i}-\bar{x})^{2}}{n-1}[/tex]

S² = Sample Variance

∑ = Sum

[tex]x_{i}[/tex] = Term in data set

[tex]\bar{x}[/tex] = Sample mean

n = Sample size

Sample mean ([tex]\bar{x}[/tex])  =

[tex]\bar{x}=\frac{\sum x}{n}[/tex]

   = [tex]\frac{1.15+1.24+1.15+1.27+1.13}{5}[/tex]

   = [tex]\frac{5,94}{5}[/tex]

  = 1.188

[tex]x_{i}[/tex]     -     [tex]\bar{x}[/tex]             [tex](x_{i}-\bar{x})[/tex]       [tex](x_{i}-\bar{x})^{2}[/tex]

1.15  -   1.88  =       0.038        0.001444

1.24  -  1.88  =       0.052        0.002704

1.15  -  1.88   =       0.038        0.001444

1.27 -   1.88  =       0.082        0.006724

1.13  -   1.88  =       0.058        0.003364

5.94                      0.268          0.01568  

[tex](x_{i}-\bar{x})^{2}[/tex]  =  0.0157

S² = [tex]\frac{0.0157}{5-1}[/tex]   =  0.0039

S² = 0.004

ACCESS MORE