Answer:
[tex]y=3.53 x +37.92[/tex]
And for 0 miles if we use the model we got:
[tex] y(0)= 3.53*0 +37.92 = 37.92[/tex]
But for this case. No is not reasonable for a representative to travel o miles and have a positive amount of sales.
Step-by-step explanation:
For this case we assume the following data:
Miles traveled (X): 2,3,10,7,8,15,3,1,11
Sales (Y): 31,33,78,62,65,61,48,55,120
We want to found a linear model like this one : [tex] y = mx+b[/tex]. Where:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=582-\frac{60^2}{9}=182[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=4329-\frac{60*553}{9}=642.33[/tex]
And the slope would be:
[tex]m=\frac{642.33}{182}=3.529[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{60}{9}=6.667[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{553}{9}=61.444[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=61.444-(3.529*6.667)=37.917[/tex]
So the line would be given by:
[tex]y=3.53 x +37.92[/tex]
And for 0 miles if we use the model we got:
[tex] y(0)= 3.53*0 +37.92 = 37.92[/tex]
But for this case. No is not reasonable for a representative to travel o miles and have a positive amount of sales.