Answer:
(a) [tex]1.75\times10^8\text{ m/s}[/tex]
(b) 1.71
Explanation:
(a) The difference in the times of travel in the two case = [tex]3.20 - 3.00 = 0.20\text{ ns} = 2.0\times10^{-9}\text{ s}[/tex]
This difference is the time in the transparent material. With a thickness of 35.0 cm, the speed in the material is
[tex]v = \dfrac{35 cm}{2.0\times10^{-9}\text{ s}}=\dfrac{0.35 m}{2.0\times10^{-9}\text{ s}} = 1.75\times10^8\text{ m/s}[/tex]
(b) The refractive index of the material is the ratio of the velocity of light in vacuum to its velocity in the material. Using speed of light in vacuum as [tex]c = 3.00\times10^8\text{ m/s}[/tex], the refractive index, [tex]n[/tex], is
[tex]n=\dfrac{c}{v} = \dfrac{ 3.00\times10^8\text{ m/s}}{1.75\times10^8\text{ m/s}}= 1.71[/tex]